3.69 \(\int \cos ^2(e+f x) (a+a \sin (e+f x))^m \, dx\)

Optimal. Leaf size=81 \[ -\frac {a 2^{m+\frac {3}{2}} \cos ^3(e+f x) (\sin (e+f x)+1)^{-m-\frac {1}{2}} (a \sin (e+f x)+a)^{m-1} \, _2F_1\left (\frac {3}{2},-m-\frac {1}{2};\frac {5}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{3 f} \]

[Out]

-1/3*2^(3/2+m)*a*cos(f*x+e)^3*hypergeom([3/2, -1/2-m],[5/2],1/2-1/2*sin(f*x+e))*(1+sin(f*x+e))^(-1/2-m)*(a+a*s
in(f*x+e))^(-1+m)/f

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2689, 70, 69} \[ -\frac {a 2^{m+\frac {3}{2}} \cos ^3(e+f x) (\sin (e+f x)+1)^{-m-\frac {1}{2}} (a \sin (e+f x)+a)^{m-1} \, _2F_1\left (\frac {3}{2},-m-\frac {1}{2};\frac {5}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{3 f} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m,x]

[Out]

-(2^(3/2 + m)*a*Cos[e + f*x]^3*Hypergeometric2F1[3/2, -1/2 - m, 5/2, (1 - Sin[e + f*x])/2]*(1 + Sin[e + f*x])^
(-1/2 - m)*(a + a*Sin[e + f*x])^(-1 + m))/(3*f)

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2689

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[(a^2*
(g*Cos[e + f*x])^(p + 1))/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2)), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \cos ^2(e+f x) (a+a \sin (e+f x))^m \, dx &=\frac {\left (a^2 \cos ^3(e+f x)\right ) \operatorname {Subst}\left (\int \sqrt {a-a x} (a+a x)^{\frac {1}{2}+m} \, dx,x,\sin (e+f x)\right )}{f (a-a \sin (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}\\ &=\frac {\left (2^{\frac {1}{2}+m} a^2 \cos ^3(e+f x) (a+a \sin (e+f x))^{-1+m} \left (\frac {a+a \sin (e+f x)}{a}\right )^{-\frac {1}{2}-m}\right ) \operatorname {Subst}\left (\int \left (\frac {1}{2}+\frac {x}{2}\right )^{\frac {1}{2}+m} \sqrt {a-a x} \, dx,x,\sin (e+f x)\right )}{f (a-a \sin (e+f x))^{3/2}}\\ &=-\frac {2^{\frac {3}{2}+m} a \cos ^3(e+f x) \, _2F_1\left (\frac {3}{2},-\frac {1}{2}-m;\frac {5}{2};\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{-\frac {1}{2}-m} (a+a \sin (e+f x))^{-1+m}}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 78, normalized size = 0.96 \[ -\frac {2^{m+\frac {3}{2}} \cos ^3(e+f x) (\sin (e+f x)+1)^{-m-\frac {3}{2}} (a (\sin (e+f x)+1))^m \, _2F_1\left (\frac {3}{2},-m-\frac {1}{2};\frac {5}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m,x]

[Out]

-1/3*(2^(3/2 + m)*Cos[e + f*x]^3*Hypergeometric2F1[3/2, -1/2 - m, 5/2, (1 - Sin[e + f*x])/2]*(1 + Sin[e + f*x]
)^(-3/2 - m)*(a*(1 + Sin[e + f*x]))^m)/f

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m,x, algorithm="fricas")

[Out]

integral((a*sin(f*x + e) + a)^m*cos(f*x + e)^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m,x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m*cos(f*x + e)^2, x)

________________________________________________________________________________________

maple [F]  time = 1.65, size = 0, normalized size = 0.00 \[ \int \left (\cos ^{2}\left (f x +e \right )\right ) \left (a +a \sin \left (f x +e \right )\right )^{m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m,x)

[Out]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sin \left (f x + e\right ) + a\right )}^{m} \cos \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m,x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m*cos(f*x + e)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(e + f*x)^2*(a + a*sin(e + f*x))^m,x)

[Out]

int(cos(e + f*x)^2*(a + a*sin(e + f*x))^m, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{m} \cos ^{2}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**m,x)

[Out]

Integral((a*(sin(e + f*x) + 1))**m*cos(e + f*x)**2, x)

________________________________________________________________________________________